Please see http://ww2.amsat.org/?p=678 for the AMSAT Field Day
announcement. This page has the links to the full rules available in
docx and pdf formats.
Contact AMSAT Director of Contests and Awards Bruce Paige, KK5DO for
any Field Day questions you may have (kk5do(a)amsat.org -or-
kk5do(a)arrl.net)
(AMSAT Web navigation hint: Click on the bold AMSAT-NA at the top of
the page for a quick return to the main www.amsat.org page.)
--
73 de JoAnne K9JKM
k9jkm(a)amsat.org
Editor, AMSAT Journal

Please see http://ww2.amsat.org/?p=655 for news of the June 1 N5BPS
balloon launch from Galveston, Texas. This flight includes a 70 cm to
10 meter transponder capable of SSB, CW, and FM modes.
--
73 de JoAnne K9JKM
k9jkm(a)amsat.org
Editor, AMSAT Journal

If any active satellite operators are attending Ham-Com in Plano, TX June 7
or 8, please email me off-list. Several of us are planning to congregate
and swap war stories.
73
Clayton
W5PFG

We have high SWR on our M^2 2MCP22 that has been up for several years . Does
someone on the list have the wiring digram of the block where the hairpin
coax is connected to the driven elements.
Thanks
nick ARS K5QXJ EM30xa 30.1N 92.1W
Office 337 593 8700
Cell 337 258 2527
Helping UL become a world Class Engineering and Educational School

With all the talk about tilting a Yagi 15 degrees above the horizon and
using a rotor in azimuth only, I have a question. Since every Yagi I have
includes mounting hardware to mount the antenna at a 90 degree angle to the
mast, how do you tilt it 15 degrees? Do you put a bend in the mast pipe?
Can you purchase hardware to allow the Yagi to tilt relative to the mast?
Maybe everyone knows a simple answer but I will admit I do not.
Thanks and 73,
Rick - WB3CSY
--
Sent from Rick's gmail account

----- Original Message -----
From: Jan van Muijlwijk
To: i8cvs
Sent: Friday, May 31, 2013 9:51 AM
Subject: Re: .[amsat-bb] Re: International Space Station-Bounce on 1296 MHz
Hi Domenico,
Thanks for your interest in the ISS reflections
Now about your questions.
1. I started calling Andreas as soon as my dish could see ISS.
That was on May 23 at 8 degrees elevation.
So the distance would have been close to 2000 km at that time.
Andreas reports that he heard me right from the beginning!
Own echo's is not possible because the time is too short
2. We heard the strongest signals when ISS was right overhead. In my case
that was at about 60 degrees elevation.
Distance probably somewhere around 500 km?
On the SDR recording from Andreas we can see the signal peaking 20 dB
over the noise and sometimes even a bit more.
3. We both used analog CW but we both listened in the SSB passband (approx.
2.5 kHz) to have some margin of error is case our Doppler compensation
was not 100% OK.
But once I found Andreas I did not touch the RIT of my rig anymore
during the QSO. Doppler compensation worked fantastic!
We hope to try other modes in future. FSK441 but also JT65 in 30 sec period
mode, and when ISS is overhead probably SSB is possible
I am also involved in the restoration of the 25 m Dwingeloo dish PI9CAM (see
www.camras.nl)
And the dish will be on air in a few months from now (I hope)
We hope to experiment with passive satellite reflection there.
ISS will be the start and with the dish having 48 dB gain it will be
possible with QRP
But maybe it's possible with other low orbiting satellites too....
To be continued!
73!
Jan
PA3FXB
Hello Jan, PA3FXB
It is very interesting that you heard the strongest signals
when the ISS was right overhead and that in your case that
was at about 60 degrees elevation with distance from the
ISS somewhere around 500 km and that in the SDR recording
from Andreas you can see the signal peaking +20 dB over the
noise and sometimes even a bit more.
It is also interesting that both of you were using analog
CW and both listened in the SSB passband (approx. 2.5 kHz)
As you can see looking at my previous budged calculations
the expected S/N ratio on CW was +6.9 dB using a receiving
bandwidth of 500 Hz on CW
It is possible that my calculations showed a less level in
ratio S/N = +6.9 dB in comparison to your received +20 dB
because for calculation with the RADAR equation I have
used a reflection factor for the ISS of only 10% wich in
reality is very low because for the Moon we use a
reflection factor of 7% but the Moon is made of stone and
not a metallic reflecting object like the ISS.
Considering that the ISS is made almost of metallic structural
material as well for supporting the solar panels and considering
that the efficiency of a metallic parabolic dish is never better
than 50% I have uptodate my previous link budged calculation
using a reflection factor of 50% for the ISS and as you can read
belove the S/N ratio at a distance of 700 km jumped up to +17dB
over the noise !
This means that your experimental investigation receiving +20 dB
match well with my calculation showing +17 dB and for the future
we can consider that a reflection factor for the ISS of 50% is a real
figure to be used.
Since you live in a quite location the antenna temperature at
1296 MHz when aimed toward the Cold Sky can be only 5 degrees
kelvin instead of the previously estimated 50 degrees kelvin
so that the overall Noise Floor of your receiving system
decreases by 3.29 dB
Read please the following revised calculations using a ISS
reflection factor of 50% instead of 10% at a range of 700 km
and 5 degrees kelvin for the equivalent antenna temperature Ta
instead of 50 kelvin
The following calculation is easyer than the previous one because
uses directly the RADAR equation.
LINK BUDGED CALCULATIONS by i8CVS
We consider the ISS like a passive reflector with reflectivity
factor of 50 % to try a QSO by reflection Earth-ISS-Earth
DATA:
1) The solar panels of the ISS plus the central body large like a
Boeing 747 have a metallic reflecting surface of about
2000 square meters and we consider the ISS like a circular
RADAR target having being a metallic plate an estimated
reflectivity factor S of 50 % at SHF
2) The range EARTH-ISS at elevation of 35 degrees is about
700 km
3) Our EME station at 1296 MHz uses a 3 meters dish in diameter
with gain of 29 dB and 200 W at the feed
4) The overall noise figure of our receive system is NF = 0.5 dB
while the antenna temperature is 5 kelvin when pointed at the
Cold Sky and we receive on CW using a filter with a BW large
500 Hz
5) We use only analogic reception without digital software like
WSJT or similar tecniques.
CALCULATION PROCEDURE :
Aiming the dish towards the ISS when distant 700 km and
transmitting on CW and using the RADAR equation we
calculate the Signal to Noise ratio S/N to see if on CW the
echoes reflected by the ISS are above or belove the Noise
Floor of receiver.
RADAR EQUATION
Pt x Gt x Ar x S
Pr = -----------------------------
( 4 x 3.14 x R^2 ) ^2
Where :
Pr = power received in watt
Pt = power transmitted = 200 watt
Gt = isotropic gain of a ground antenna at 1296 MHz = 29 dB
or 794.3 time in power
Ar = aperture area of isotropic antenna at 1296 MHz = 0,0043
square meters
S = Sigma or Radar Cross Section i.e. the surface of the ISS in
square meters with reflecting coefficient of 0.50 = 50 %
R = distance or range EARTH-ISS = 700 km = 700000 meters
NOTE:
(4 x 3.14 x R^2)^2 calculates the surface of a sphere having a
radius R=700000 meters squared 2 to take account of the
round trip "EARTH-ISS-EARTH"
CALCULATION OF ATTENUATION "EARTH-ISS-EARTH" :
S = Sigma of the ISS with reflecting surface of 2000 square meters
and reflection coefficient of 50 % = 2000 x 0.50 = 1000 square meters
Calculation of the aperture area Ar of isotropic antenna at 1296 MHz
/ 2 2
/\ 0,2314
Ar = ---------- = ----------- = 0,0043 square meters
4 x 3,14 4 x 3,14
Calculation of the received power Pr on the EARTH
collected by the antenna with gain of 29 dB or 794.3
time in power at 1296 MHz
200 x 794.3 x 0.0043 x 1000 -20
Pr = ------------------------------------- = 1.80 x 10 watt
(4 x 3.14 x 700000^2 )^2
-20
Pr = 10 log 1.80 x 10 = -197.4 dBW
10
CALCULATION OF THE OVERALL NOISE FLOOR
FOR THE RECEIVER :
Data of the 1296 MHz receiving system :
Overall Noise Figure of receiving system NF= 0.5 dB = 35 kelvin
Bandwidth BW of receiver on CW = 500 Hz
Equivalent Noise Temperature Ta of the antenna when aimed toward
the Cold Sky = 5 kelvin
Calculation to get the Noise Floor KTB of receiver
Where :
-23
K = Boltzmann constant = 1,38 x 10 joule/kelvin
T = Equivalent noise temperature Ta of the antenna plus the
equivalent Noise Temperature Te of receiver i.e. T= (Ta + Te)
Computation of the overall Noise Factor F for the receiver
F = 10 ^ (NF/10) and so F = 10 ^(0,5 / 10) = 10 ^0,05 = 1,12
in factor
The equivalent overall Noise Temperature Te of the receiver is
Te = ( F-1) x 290 = (1,12 -1) x 290 = 35 kelvin
The overall Noise Floor KTB of the receiving system with the
antenna connected is :
KTB = K x ( Te + Ta ) x BW and in numbars :
-23
Noise Floor KTB = 1,38 x 10 x ( 35 + 5 ) x 500 = -185.5 dBW
LINK CALCULATION "round trip" EARTH -ISS-EARTH at 1296 MHz
on CW
Power Pr received on EARTH over
1296 MHz isotropic antenna ........... - 197.5 dBW
Antenna Gain in RX......................... + 29 dB
------------
Power available at receiver input .... - 168.5 dBW
RX Noise Floor......................... ........- 185.5 dBW
------------
S/N ratio CW at RX audio output... + 17.0 dB
CONCLUSION :
At a range of 700 km from the ISS and using a 3 meters dish with
200 W at the feed and a receiving system with a Noise Floor of
-185.5 dBW = - 155.5 dBm it is possible to hear your hown echo
signals in plain analogic CW with a Signal to Noise ratio S/N of
+17.0 dB wich is very strong.
If two stations are equipped with the same equipments it is
possible to make good QSO for a short time when the ISS
is close range around 700 km at elevation of about 35
degrees.
Increasing the BW of receiver at 2700 Hz to try receive SSB
it is possible since 10 time log (2700/500) = 7.3 dB and
+17 dB - (+7.3 dB ) = +9.7 dB and so the signal scattered back
by the ISS in SSB will have a S/N ratio of about + 9.7 dB
i.e. well over the Noise Floor of your receiver.
It is necessary to use a precise traking system particularly fast
to move the dish as soon the ISS approach the TCA because
the beam wide of a 3 meter dish with gain of 29 dB is large
only about 5 degrees at the -3 dB points so that traking the
ISS at 1296 MHz with a 3 meter dish or even larger for EME
it seems to be the more critical point of the experiment.
73" de
i8CVS Domenico

Hi Domenico,
Thanks for your interest in the ISS reflections
Now about your questions.
1. I started calling Andreas as soon as my dish could see ISS.
That was on May 23 at 8 degrees elevation.
So the distance would have been close to 2000 km at that time.
Andreas reports that he heard me right from the beginning!
Own echo's is not possible because the time is too short
2. We heard the strongest signals when ISS was right overhead. In my case
that was at about 60 degrees elevation.
Distance probably somewhere around 500 km?
On the SDR recording from Andreas we can see the signal peaking 20 dB
over the noise and sometimes even a bit more.
3. We both used analog CW but we both listened in the SSB passband (approx.
2.5 kHz) to have some margin of error is case our Doppler compensation
was not 100% OK.
But once I found Andreas I did not touch the RIT of my rig anymore
during the QSO. Doppler compensation worked fantastic!
We hope to try other modes in future. FSK441 but also JT65 in 30 sec period
mode, and when ISS is overhead probably SSB is possible
I am also involved in the restoration of the 25 m Dwingeloo dish PI9CAM (see
www.camras.nl)
And the dish will be on air in a few months from now (I hope)
We hope to experiment with passive satellite reflection there.
ISS will be the start and with the dish having 48 dB gain it will be
possible with QRP
But maybe it's possible with other low orbiting satellites too....
To be continued!
73!
Jan
PA3FXB
Hello Jan, PA3FXB
It is very interesting that you heard the strongest signals
when the ISS was right overhead and that in your case that
was at about 60 degrees elevation with distance from the
ISS somewhere around 500 km and that in the SDR recording
from Andreas you can see the signal peaking +20 dB over the
noise and sometimes even a bit more.
It is also interesting that both of you were using analog
CW and both listened in the SSB passband (approx. 2.5 kHz)
As you can see looking at my previous budged calculations
the expected S/N ratio on CW was +6.9 dB using a receiving
bandwidth of 500 Hz on CW
It is possible that my calculations showed a less level in
ratio S/N = +6.9 dB in comparison to your received +20 dB
because for calculation with the RADAR equation I have
used a reflection factor for the ISS of only 10% wich in
reality is very low because for the Moon we use a
reflection factor of 7% but the Moon is made of stone and
not a metallic reflecting object like the ISS.
Considering that the ISS is made almost of metallic structural
material as well for supporting the solar panels and considering
that the efficiency of a metallic parabolic dish is never better
than 50% I have uptodate my previous link budged calculation
using a reflection factor of 50% for the ISS and as you can read
belove the S/N ratio at a distance of 700 km jumped up to +17dB
over the noise !
This means that your experimental investigation receiving +20 dB
match well with my calculation showing +17 dB and for the future
we can consider that a reflection factor for the ISS of 50% is a real
figure to be used.
Since you live in a quite location the antenna temperature at
1296 MHz when aimed toward the Cold Sky can be only 5 degrees
kelvin instead of the previously estimated 50 degrees kelvin
so that the overall Noise Floor of your receiving system
decreases by 3.29 dB
Read please the following revised calculations using a ISS
reflection factor of 50% instead of 10% at a range of 700 km
and 5 degrees kelvin for the equivalent antenna temperature Ta
instead of 50 kelvin
LINK BUDGED CALCULATIONS by i8CVS
We consider the ISS like a passive reflector with reflectivity
factor of 50 % to try a QSO by reflection Earth-ISS-Earth
DATA:
1) The solar panels of the ISS plus the central body large like a
Boeing 747 have a metallic reflecting surface of about
2000 square meters and we consider the ISS like a circular
RADAR target having being a metallic plate an estimated
reflectivity factor S of 50 % at SHF
2) The range EARTH-ISS at elevation of 35 degrees is about
700 km
3) Our EME station at 1296 MHz uses a 3 meters dish in diameter
with gain of 29 dB and 200 W at the feed
4) The overall noise figure of our receive system is NF = 0.5 dB
while the antenna temperature is 5 kelvin when pointed at the
Cold Sky and we receive on CW using a filter with a BW large
500 Hz
5) We use only analogic reception without digital software like
WSJT or similar tecniques.
CALCULATION PROCEDURE :
Aiming the dish towards the ISS when distant 700 km and
transmitting on CW and using the RADAR equation we
calculate the Signal to Noise ratio S/N to see if on CW the
echoes reflected by the ISS are above or belove the Noise
Floor of receiver.
First of all using the RADAR equation we calculate the round
trip attenuation in dB between EARTH-ISS-EARTH when
approaching to TCA the average range is 700 km
RADAR EQUATION
Pt x Gt x Ar x S
Pr = -----------------------------
( 4 x 3.14 x R^2 ) ^2
Where :
Pr = power received in watt
Pt = power transmitted = 1 watt
Gt = isotropic gain of a ground antenna at 1296 MHz = 1 time
in power or 0 dB
Ar = aperture area of isotropic antenna at 1296 MHz = 0,0043
square meters
S = Sigma or Radar Cross Section i.e. the surface of the ISS in
square meters with reflecting coefficient of 0.50 = 50 %
R = distance or range EARTH-ISS = 700 km = 700000 meters
NOTE:
(4 x 3.14 x R^2)^2 calculates the surface of a sphere having a
radius R=700000 meters squared 2 to take account of the
round trip "EARTH-ISS-EARTH"
CALCULATION OF ATTENUATION "EARTH-ISS-EARTH" :
S = Sigma of the ISS with reflecting surface of 2000 square meters
and reflection coefficient of 50 % = 2000 x 0.50 = 1000 square meters
Calculation of the aperture area Ar of isotropic antenna at 1296 MHz
/ 2 2
/\ 0,2314
Ar = ---------- = ----------- = 0,0043 square meters
4 x 3,14 4 x 3,14
Calculation of the received power Pr on the EARTH
collected by the isotropic antenna at 1296 MHz
1 x 1 x 0.0043 x 1000 -25
Pr = --------------------------------- = 1.13 x 10 watt
(4 x 3.14 x 700000^2 )^2
Calculation of the attenuation Att for the Round-Trip
EARTH-ISS-EARTH
Pt (1watt)
24
Att = --------------------- = 8.81 x 10 time in power
-25
1.13 x 10 watt
24
and in dB the Att = 10 log 8.81 x 10 = 249.5 dB
10
CALCULATION OF THE OVERALL NOISE FLOOR
FOR THE RECEIVER :
Data of the 1296 MHz receiving system :
Overall Noise Figure of receiving system NF= 0.5 dB = 35 kelvin
Bandwidth BW of receiver on CW = 500 Hz
Equivalent Noise Temperature Ta of the antenna when aimed toward
the Cold Sky = 5 kelvin
Calculation to get the Noise Floor KTB of receiver
Where :
-23
K = Boltzmann constant = 1,38 x 10 joule/kelvin
T = Equivalent noise temperature Ta of the antenna plus the
equivalent Noise Temperature Te of receiver i.e. T= (Ta + Te)
Computation of the overall Noise Factor F for the receiver
F = 10 ^ (NF/10) and so F = 10 ^(0,5 / 10) = 10 ^0,05 = 1,12
in factor
The equivalent overall Noise Temperature Te of the receiver is
Te = ( F-1) x 290 = (1,12 -1) x 290 = 35 kelvin
The overall Noise Floor KTB of the receiving system with the
antenna connected is :
KTB = K x ( Te + Ta ) x BW and in numbars :
-23
Noise Floor KTB = 1,38 x 10 x ( 35 + 5 ) x 500 = -185.5 dBW
LINK CALCULATION "round trip" EARTH -ISS-EARTH at 1296 MHz
on CW
TX power at feed.................................+23 dBW = 200 watt
Antenna Gain in TX................. ...........+29 dBi
------------
EIRP transmitted to the ISS. ..............+52 dBW = 158.5 kW
Attenuation EARTH-ISS-EARTH... - 249.5 dB
-------------
Power Pr received on EARTH over
isotropic antenna ............................ - 197.5 dBW
Antenna Gain in RX......................... + 29 dB
------------
Power incident at receiver input ...... - 168.5 dBW
RX Noise Floor......................... ........- 185.5 dBW
------------
S/N ratio CW at RX audio output... + 17.0 dB
CONCLUSION :
At a range of 700 km from the ISS and using a 3 meters dish with
200 W at the feed and a receiving system with a Noise Floor of
-185.5 dBW = - 155.5 dBm it is possible to hear your hown echo
signals in plain analogic CW with a Signal to Noise ratio S/N of
+17.0 dB wich is very strong.
If two stations are equipped with the same equipments it is
possible to make good QSO for a short time when the ISS
is close range around 700 km at elevation of about 35
degrees.
Increasing the BW of receiver at 2700 Hz to try receive SSB
it is possible since 10 time log (2700/500) = 7.3 dB and
+17 dB - (+7.3 dB ) = +9.7 dB and so the signal scattered back
by the ISS in SSB will have a S/N ratio of about + 9.7 dB
i.e. well over the Noise Floor of your receiver.
It is necessary to use a precise traking system particularly fast
to move the dish as soon the ISS approach the TCA because
the beam wide of a 3 meter dish with gain of 29 dB is large
only about 5 degrees at the -3 dB points so that traking the
ISS at 1296 MHz with a 3 meter dish or even larger for EME
it seems to be the more critical point of the experiment.
73" de
i8CVS Domenico